166 research outputs found

    An efficient compressive sensing based PS-DInSAR method for surface deformation estimation

    Get PDF
    Permanent scatterers differential interferometric synthetic aperture radar (PS-DInSAR) is a technique for detecting surface micro-deformation, with an accuracy at the centimeter to millimeter level. However, its performance is limited by the number of SAR images available (normally more than 20 are needed). Compressive Sensing (CS) has been proven to be an effective signal recovery method with only a very limited number of measurements. Applying CS to PS-DInSAR, a novel CS-PS-DInSAR method is proposed to estimate the deformation with fewer SAR images. By analyzing the PS-DInSAR process in detail, first the sparsity representation of deformation velocity difference is obtained; then, the mathematical model of CS-PS-DInSAR is derived and the restricted isometry property (RIP) of the measurement matrix is discussed to validate the proposed CS-PS-DInSAR in theory. The implementation of CS-PS-DInSAR is achieved by employing basis pursuit algorithms to estimate the deformation velocity. With the proposed method, DInSAR deformation estimation can be achieved by a much smaller number of SAR images, as demonstrated by simulation result

    Mean value coordinates–based caricature and expression synthesis

    Get PDF
    We present a novel method for caricature synthesis based on mean value coordinates (MVC). Our method can be applied to any single frontal face image to learn a specified caricature face pair for frontal and 3D caricature synthesis. This technique only requires one or a small number of exemplar pairs and a natural frontal face image training set, while the system can transfer the style of the exemplar pair across individuals. Further exaggeration can be fulfilled in a controllable way. Our method is further applied to facial expression transfer, interpolation, and exaggeration, which are applications of expression editing. Additionally, we have extended our approach to 3D caricature synthesis based on the 3D version of MVC. With experiments we demonstrate that the transferred expressions are credible and the resulting caricatures can be characterized and recognized

    Yttria-Stabilized Zirconia Assisted Green Electrochemical Preparation of Silicon from Solid Silica in Calcium Chloride Melt

    Get PDF
    A novel integrated cell with O2-|YSZ|Pt|O2(air) reference and counter electrodes was constructed using a short yttria-stabilized zirconia solid electrolyte (YSZ) tube. Combining with cyclic voltammetry and potentiostatic electrolysis methods, green electrochemical preparation of Si from solid SiO2 in CaCl2 melt at 1173 K was studied via an experimental apparatus containing the novel integrated cell under completely carbon-free conditions; the effect of electrolysis time on the morphology of the Si product was also investigated by scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS). The results show that the morphology of the product obtained from potentiostatic electrolysis at a low overpotential (− 1.6 V) undergoes an evolution from SiO2 raw powder with different sizes to aggregates of spherical particles and small particles with partial reduction, and then to Si nuclei, and finally to Si wires or flakes. The morphology of electrolytic products has little relation with that of SiO2 raw powder and may be controlled by applying different potentials. Furthermore, the longer the electrolysis time, the more the Si wires grow, and the higher the Si purity overall. It is feasible that the experimental apparatus without the sealed stainless steel reactor and any carbonaceous materials can be used to prepare Si from solid SiO2 in CaCl2 melt and release O2 gas at the same time

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    A modification of usual C–V measurement to more precisely characterize the band offsets in a-Si:H/c-Si heterojunctions

    Get PDF
    Due to a strong inversion layer at the a-Si:H/c-Si interface, there are errors in the determination of the band offsets by usual capacitance–voltage (C–V) measurements. An improved C–V measurement was presented to correct the errors by a modification to the apparent diffusion potential Vint. In this paper, the improved C–V measurement is used to characterize the band offsets in a-Si:H/c-Si heterojunctions with a good precision. The modified apparent diffusion potential is determined from Vint and the minority carrier density at the c-Si interface deduced from the coplanar conductance measurements. The value of ΔEC = 0.17 ± 0.04 eV between a-Si:H and c-Si is found by the improved C–V measurement with a precise determination of the band offsets
    • 

    corecore